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Abstract

We apply the use of Vieta's formula and the results of locus curves from 2D in [9] to
�nd the locus surfaces on some quadratic surfaces. We explore the locus surfaces E; which
can be obtained by rotating a proper 2D locus curve around a rotating axis. Moreover, we
discuss how the Vieta's formulas can be applied in special surfaces when solving higher
degree polynomial equations.

1 Introduction

The problems discussed in this paper are extensions from those 2D problems discussed in [9]
to corresponding 3D problems. In this article we explore the following
Main problem: We are given a �xed point A 2 R3 and a point C on a surface �. We

let the line l pass through A and C and intersect a well-de�ned D on �, we want to determine

the locus surface generated by the point E, lying on CD, which satis�es
��!
ED = s

��!
CD; where s

is a real number parameter.
Activities explored in this paper can be bene�cial to readers who have knowledge in multi-

variable calculus. In Section 2, we investigate how the Vieta's formulas, we adopted in �nding
the locus curves in 2D (see [9]), can be used in selected quadric surfaces. In Section 3, we start
with a locus curve d(t) of a given curve c(t), where t 2 [a; b] and we shall see how we can �nd
the corresponding locus surface. We �rst rotate the curve c(t) around a proper axis to get the
corresponding surface, then we shall see that the corresponding locus surface can be obtained
by rotating d(t) around a proper axis too. In Section 4, we explore surfaces that are central
symmetric, surfaces that are symmetric to the origin, and their respective locus surfaces can be
found easily. Consequently, it leads us to investigate some special higher degree surfaces where
either Vieta's formulas can be applied or not needed when �nding the locus surfaces.
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2 Quadric Surfaces: The �xed point A at arbitrary lo-

cation

We recall that to the main thrust of �nding the locus curve for a given 2D curve, in [9],
is to apply the Vieta's formulas, on both the implicit and parametric equations for that
given curve. In this section, we follow these ideas in order to �nd the locus surfaces when
the given surfaces are quadrics. We also recall that for a real polynomial of degree n, say
p(x) = anx

n + an�1x
n�1 + � � �+ a1x+ a0, having roots r1; r2; : : : ; rn, then Vieta's formulas are:

r1 + r2 + � � �++rn�1 + rn = �
an�1
an

;

(r1r2 + � � �+ r1rn) + (r2r3 + � � �+ r2rn) + (rn�1rn) =
an�2
an

;

...

r1r2 � � � rn�1rn = (�1)n
a0
an
:

2.1 The ellipsoid

Let A = (x0; y0; z0). Consider the ellipsoid

� =

�
(x; y; z) 2 R3 : x

2

a2
+
y2

b2
+
z2

c2
= 1

�
(1)

Using the standard parametrization for �, we can represent a generic point C on � as24 x̂ŷ
ẑ

35 =
24 a cos(u) sin(v)b sin(u) sin(v)

c cos(v)

35 (2)

where u 2 [0; 2�] is \longitude" and v 2 [0; �] is \colatitude". In order to calculate the
coordinates of point D = (x; y; z) (which is di�erent from C), as the intersection between the
quadric � and the line l passing through A and C, we make use of the parametric equation of
line l as follows:

x� x0 = �(x̂� x0);
y � y0 = �(ŷ � y0);
z � z0 = �(ẑ � z0):

Hence, we obtain

y � y0
x� x0

=
ŷ � y0
x̂� x0

; (3)

z � z0
x� x0

=
ẑ � z0
x̂� x0

: (4)

2
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By substituting (2) into equations (3) and (4), we get some expressions for the left hand side
in (3) and (4), allowing us to de�ne two auxiliary functions, namely

k(u; v) =
b sin(u) sin(v)� y0
a cos(u) sin(v)� x0

; (5)

m(u; v) =
c cos(v)� z0

a cos(u) sin(v)� x0
: (6)

Since both intersection points, C and D, satisfy the implicit equation of �, we can use (5) and
( 6) to get the x{coordinate of D, say x1, by calculating the roots of the polynomial

p(x) = a2x
2 + a1x+ a0;

where

a2 =
a2b2m(u; v)2 + a2c2k(u; v)2 + b2c2

a2b2c2
(7)

a1 =
2
�
z0b

2m(u; v) + y0c
2k(u; v)� x0(b2m(u; v)2 + c2k(u; v)2)

�
b2c2

(8)

a0 =
x20
�
b2m(u; v)2 + c2k(u; v)2

�
� 2x0

�
z0b

2m(u; v) + y0c
2k(u; v)

�
+ y20c

2 + z20b
2 � b2c2

b2c2
: (9)

It follows from p(x̂) = 0 and the Vieta's formulas that

x1 = �
a1
a2
� x̂:

It follows from (3) and (4) that

y1 = y0 + k(x1 � x0) and z1 = z0 +m(x1 � x0):

For a given s, the locus surface generated by point E = sC + (1� s)D is de�ned as

�(u; v) =

24 xeye
ze

35 =
24 sx̂+ (1� s)x1sŷ + (1� s)y1
sẑ + (1� s)z1

35 :
The explicit form of the locus surface � can be found in Exploration [S1]. We use the following
Example to demonstrate how we �nd the locus for a particular ellipsoid.

Example 1 Consider the ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1;

when a = 5; b = 4; and c = 3. We let the �xed point A = (2;�3; 4): A few locus traces for the
point E = sC+(1�s)D; when s = 2; u 2 [0; 2�]; v = �=8; 3�=8; 5�=8 and 7�=8 (top to bottom)

3
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are shown in Figure 1(a). The corresponding locus surface generated by point E = sC+(1�s)D
when s = 2 is shown in Figure 1(b).

Figure 1(a). Locus traces Figure 1(b). Locus surface

We can also explore the locus surface for the ellipsoid for the following scenarios using Netpad
(see [5]). We plot the surface when a = 5; b = 4; c = 3; s = 1:7; and the �xed point A = (2;�3; 4)
together with the locus trace when v is �xed at 0:81 and u varies between 0 and 2� in Figure 2
as follows.

Figure 2. Locus when
a = 5; b = 4; c = 3; s = 1:7 and

v = 0:81

Discussions: Let the given surface � be compact and convex, and the �xed point A is
outside the surface �:

4
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1. If s > 1; we conjecture that the corresponding locus surface will be containing and tangent
to �:

2. If s < 1; we conjecture that � will be inside and tangent to its locus surface.

2.2 Special case: the sphere

When a = b = c = r, the ellipsoid (1) becomes the sphere

�r =
�
(x; y; z) 2 R3 : x2 + y2 + z2 = r2

	
and the generic point C has the form24 x̂ŷ

ẑ

35 =
24 r cos(u) sin(v)r sin(u) sin(v)

r cos(v)

35
Now, to �nd locus surface generated by point D, we use the simpli�ed auxiliary functions

k(u; v) =
r sin(u) sin(v)� y0
r cos(u) sin(v)� x0

m(u; v) =
r cos(v)� z0

r cos(u) sin(v)� x0

where

a2 = m(u; v)
2 + k(u; v)2 + 1 (10)

a1 = 2
�
z0m(u; v) + y0k(u; v)� x0(m(u; v)2 + k(u; v)2)

�
(11)

a0 = x
2
0(m(u; v)

2 + k(u; v)2)� 2x0
�
z0m(u; v) + y0k(u; v)

�
+ y20 + z

2
0 � r2: (12)

The explicit form of the corresponding locus surface � can be found in Exploration [S2].

Example 2 Consider the sphere
x2 + y2 + z2 = 9:

We let the �xed point A = (2;�3; 4); A few locus traces for the point E = sC +(1� s)D; when
s = 1:5; u 2 [0; 2�]; v = �=8; 3�=8; 5�=8 and 7�=8 (top to bottom) are shown in Figure 3(a).
The corresponding locus surface generated by point E = sC +(1� s)D; when s = 1:5; is shown

5
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in Figure 3(b).

Figure 3(a). Some traces for the locus
surface Figure 3(b). Locus surface

Using a simple geometric argument (see Figure 4(a)), it is possible to extend the proof in
[9] to show that for A inside �r and s = 0:5, the locus surface is the sphere with center at
(x0
2
; y0
2
; z0
2
) and radius 1

2

p
x20 + y

2
0 + z

2
0 .

Figure 4(a). Perpendicular
bisector of a chord of the sphere

We demonstrate this e�ect by considering the following

Example 3 We are given the sphere

x2 + y2 + z2 = 25;

6
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and the �xed point A = (1;�1; 2): As we expected, the locus surface for s = 0:5 is a sphere

with center at 0:5 � (1;�1; 2) and radius 0:5
q
12 + (�1)2 + 22. We show a few locus traces for

the point E = sC + (1 � s)D; when s = 0:5; u 2 [0; 2�]; v = �=8; 3�=8; 5�=8 and 7�=8 (top
to bottom) in Figure 4(b). The locus surface generated by point E = sC + (1 � s)D; when
parameter s = 0:5; is shown in Figure 4(c).

Figure 4(b). Some traces
of the locus surface Figure 4(c). Local surface

To explore the locus surface and reproduce animations of the locus traces shown in this
section, see Exploration [S3].

3 Rotation Surfaces: The �xed point A is on the rotation

axis

In this section, we shall explore the following scenario: Suppose, as was done in [9], that we
have found the locus curve d(t) of a given curve c(t), where t 2 [a; b]: If we rotate the curve c(t)
around a proper axis to get the corresponding surface of revolution, then the corresponding
locus surface can also be obtained by rotating d(t) around a proper axis. We describe this in
details here. Let c be a closed curve with parametric equation

c(t) = (f(t); g(t)); t 2 [0; 2�];

and suppose point A0 = (x0; 0) is �xed. Let s be a given parameter and suppose that the lines
passing through point A0 intersect the curve c at points C 0 and D0, respectively. The parametric

equation of the locus curve d; generated by the point E 0 on line C 0D0, satisfying
��!
E 0D0 = s

��!
C 0D0;

is written as follows:
d(t) = (fs;A0(t); gs;A0(t)); t 2 [0; 2�]:

Now, let � be the surface of revolution, obtained by rotating curve c around the x{axis.

7
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Then we have

�(u; v) =

24 f(u)
g(u) cos v
g(u) sin v

35 ;
where u 2 [0; 2�]; v 2 [0; �] and A = (x0; 0; 0) is the �xed point. For lines passing through
point A, intersecting the surface � at points C and D, respectively, we face the problem of
calculating the parametric equation of the locus surface �; that is generated by the point E

lying on the line CD and satisfying
��!
ED = s

��!
CD. We consider the following observation.

Proposition 4 � is the surface of revolution obtained by rotating \curve d" around the x{axis,
that is,

�(u; v) =

24 fs;A0(u)
gs;A0(u) cos(v)
gs;A0(u) sin(v)

35 ; u 2 [0; 2�]; v 2 [0; �]:

Proof
Let E be a point on the surface �. By the way of our construction for � , there exist points

C and D on surface � such that E = sC+(1�s)D. Since � is the surface of revolution obtained
by rotating curve c around the x{axis, there exist angle � 2 [0; �] and points C 0 = [c0x; c0y; 0] and
D0 = [d0x; d

0
y; 0] on the curve

�0(t) =

24 f(t)g(t)
0

35 ; t 2 [0; 2�]

such that C and D are, respectively, the rotations of C 0 and D0 around the x{axis by �. Because
rotations in R3 are isometries, point E 0 = sC 0 + (1� s)D0 is on locus curve

�0(t) =

24 fs;A0(t)gs;A0(t)
0

35 ; t 2 [0; 2�];

Using again the properties of rotations, we claim that by rotating the point E 0, through angle �
around x{axis, we get point E on surface locus �. Analogous result can be stated if we rotate
curve c around the y-axis.

3.1 Hyperboloid with two sheets

We apply Proposition 4 on �nding the locus surface for a hyperboloid with two sheets. Let
A = (x0; 0; 0), with x0 < 0. For given a and b, we consider the surface generated by rotating
the following hyperbola around the x{axis

x2

a2
� y

2

b2
= 1

Following the calculations in [9], it can be shown that for �xed point A0 = (x0; 0) and point C
0

moving on the right branch of the hyperbola, that is,

C 0 = (a cosh(t); b sinh(t)); t 2 R;

8
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the parametric equation of the locus curve, generated by point E 0 = sC 0 + (1� s)D0; is

d(t) =

2664
s a cosh(t) + (s� 1)

�
2a2x0 sinh(t)2

x20�2a cosh(t)x0+a2
+ a cosh(t)

�
s b sinh(t) + (s� 1) b sinh(t)

a cosh(t)�x0

�
2a2x0 sinh(t)2

(x20�2a cosh(t)x0+a2)
a cosh(t) + x0

�
3775 ; t 2 R:

It follows from Proposition 4 that the locus surface generated by point E = sC + (1� s)D is

�(u; v) =

266666664

s a cosh(u) + (s� 1)
�

2a2x0 sinh(u)2

x20�2a cosh(u)x0+a2
+ a cosh(u)

�
�
s b sinh(u) + (s� 1) b sinh(u)

a cosh(u)�x0

�
2a2x0 sinh(t)2

(x20�2a cosh(t)x0+a2)
a cosh(t) + x0

��
cos(v)

�
s b sinh(u) + (s� 1) b sinh(u)

a cosh(u)�x0

�
2a2x0 sinh(t)2

(x20�2a cosh(t)x0+a2)
a cosh(t) + x0

��
sin(v)

377777775
;

where u 2 R; v 2 [0; �]:
Remark: We remark that the locus surface �(u; v) can be also obtained directly by gener-

alizing the 2D techniques used in [9] or Section 2.1 to this 3D case (see Exploration [S4]). We
demonstrate this e�ect by considering the following

Example 5 Consider the surface generated by rotation around x{axis of the hyperbola

x2

25
� 4y

2

81
= 1:

A locus trace and the locus surface generated by point E = sC + (1 � s)D when parameter
s = 0:1; and the �xed point A = (�1; 0; 0) are shown in Figures 5(a) and 5(b) respectively.

Figure 5(a). Some traces for the
locus surface Figure 5(b). Locus surface

To explore the locus surface and reproduce an animation of the locus trace shown above see
Exploration [S5].

9
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3.2 Rotation surface generated by a cardioid

Let A = (0; 0; 0) and r(t) = a � a cos t: We consider the surface generated by rotating the
following cardioid curve around the x-axis.

c(t) = (r(t) cos(t); r(t) sin(t)); t 2 [0; 2�]

We extend the derivation shown in [9] when a = 1: It can be shown that for the �xed point
A0 = (0; 0), the parametric equation of the locus curve generated by point E 0 = sC 0+(1� s)D0

is
d(t) =

�
a cos(t)(cos(t)� 2s+ 1); a sin(t)(s cos(t)� 2 cos(t) + s)

�
; t 2 [0; 2�]:

If we agree that D must be di�erent from A, it follows from Proposition 4 that the locus surface
generated by point E = sC + (1� s)D is

�(u; v) =

24 a cos(u)
�
cos(u)� 2s+ 1

�
a sin(u)

�
s cos(u)� 2 cos(u) + s

�
cos(v)

a sin(u)
�
s cos(u)� 2 cos(u) + s

�
sin(v)

35 ; u 2 [0; 2�]; v 2 [0; �]:

Example 6 Consider the cardioidal surface generated by rotation around x{axis of the cardioid
curve when r(t) = 2� 2 cos t; and

c(t) = (r(t) cos(t); r(t) sin(t)); t 2 [0; 2�]:

Fixed point A = (0; 0; 0) to be the origin; some traces, generated by the point, E = sC+(1�s)D,
with parameter s = 0:3; together with the original cardioidal surface are shown in Figure 6(a).
The corresponding locus surface is shown in Figure 6(b). To experiment the locus traces, we
refer readers to see [S7].

Figure 6(a). Some traces for the
locus surface Figure 6(b). Locus surface

10
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Explorations:

1. It is interesting to observe in this case that if C 0 = (r(t) cos(t); r(t) sin(t)) and the �xed
point is at the origin A0 = (0; 0) ; and take D0 = (r(t+ �) cos(t+ �); r(t+ �) sin(t+ �));
then three points A0; C 0 and D0 are collinear, and the locus curve E 0 = sC+(1�s)D is the
same as the one obtained using the Vieta's formulas as shown in [9]. We may therefore
apply the Proposition 4 to obtain the locus surface in 3D accordingly. For exploration on
the locus E; please see [6]. We capture screen shot of the locus surface when s = 0:7 and
the trace of u = 0:88 in yellow in Figure 6(c).

Figure 6(c) Locus surface when
s = 0:7; trace of v = 4:88 (yellow).

(13)

2. We shall discuss in details how we apply the Vieta's formulas directly, without using the
rotation technique, when �nding the locus surface for the 3D cardioidal surface, in the
next subsection.

3. We remark that if C 0 = (r(t) cos(t); r(t) sin(t)) and the �xed point is at the origin A0 =
(0; 0) ; then the antipodal point with respective to A turns out to be D0 = (r(t+�) cos(t+
�); r(t+�) sin(t+�)):We then apply the Proposition 4 to obtain the corresponding locus
surface in 3D accordingly.

3.3 Locus of 2D or 3D with a higher degree polynomial

We shall investigate in some special cases where higher degree polynomial equations can be
reduced to quadratic equations when �nding roots. Thus the Vieta's formulas can be applied.
We recall that when the line l; connecting the �xed point A and a given point C on a surface,
it is possible that l becomes a vertical at a speci�ed t: In such a case, we call t to be a
singular point. We use the preceding example to demonstrate how we can ignore the singular
point so the Vieta's formulas can be applied. Consider c(u) = (r(u) cos u; r(u) sinu) ; where
r(u) = 2� 2 cosu; and u 2 [0; 2�]. We discuss the following two scenarios:

11
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Case 1. When A = (0; 0; 0): We want to �nd the locus surface E = sC + (1 � s)D. We
outline the procedure as follows:

1. Since implicit equation for c(u) is

x4 + 2y2x2 + y4 + 4x3 + 4xy2 � 4y2 = 0;

the 3D implicit equation for the cardioidal surface � by rotating c(t) around the x-axis is

x4 + 2(y2 + z2)x2 + (y2 + z2)2 + 4x3 + 4x(y2 + z2)� 4(y2 + z2) = 0:

2. The parametric equation for the cardioidal surface � is24 (2� 2 cosu) cosu
(2� 2 cosu) sinu cos v
(2� 2 cosu) sinu sin v

35 :
We adopt the techniques from Eqs 4 { 6, to get the x{coordinate of D. The polynomial
equation p(x) = 0 turns out to be a degree 4 with double roots at x = 0: Thus, p(x)

x2
is

quadratic as shown below:

p(x)

x2
=
(x2 + (4x� 4) (cosu)2 + 4 cos4 u)

(cosu)4
:

3. We ignore the singular point when u = �
2
and apply the Vieta's formulas, so we obtain

the coordinates of point D and the locus surface �(u; v) satisfying E = sC + (1 � s)D
accordingly. We depict the locus surface when s = 0:3 using Maple [3] in Figure 7.

Figure 7. Locus surface when
s = 0:3

4. For exploration with Maple [3], see [S6].

12
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Case 2. When A = (�4; 0; 0): Find the locus surface E = sC + (1� s)D for the surface
�. With a DGS in hand (such as [2]), it is easy to see the following observations for the 2D
case of c(u) = (r(u) cos u; r(u) sinu) :

1. The point D0 is �xed at A0 = (�4; 0) and when C 0 2 c(u): We see the line A0C 0 becomes
a vertical line when t = �; where the singular point is located.

2. We follow the Vieta's techniques used in [9] or follow the ideas described in Section 2.1, we
�nd an equation of degree four polynomial p in x with the coe�cient of (r(u) cos u+ 4)n

in the denominator, where n = 1; 2; 3; 4:

3. We avoid the singular point when r(u) cos u+4 = 0 or u = �; by multiplying (r(u) cos u+ 4)4

by p; to obtain another degree 4 polynomial in x; say q:

4. We solve q(x) = 0 and yield four solutions, which are two real roots and two complex
roots. We ignore those two complex solutions, and the real solutions as expected to be
�4 and r(u) cos u respectively.

5. Therefore, as expected D = A0 = (�4; 0); and we �nd the locus E = sC + (1� s)D to be�
xe(t)
ye(t)

�
=

�
s (r cos t)� 4(1� s)

s (r sin t)

�
:

Accordingly, we can �nd the respective locus surface for the cardioidal surface � by

rotating

�
xe(t)
ye(t)

�
around the x�axis. The next exercise involves an equation of degree

6 polynomial and yet the Vieta's formulae are still applicable because the equation of
degree 6 polynomial has quadruple repeated roots at the origin.

Exercise 7 We consider r(t) = �2 cos t + 2 cos2 t and c(t) = [r(t) cos t; r(t) sin t]; where t 2
[0; 2�] ; see Figure 8(a). Let the �xed point A be at the origin. Find the locus surface:

Figure 8(a).
r(t) = �2 cos t+ 2 cos2 t

13
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Method 1. Thanks to [1], we obtain the implicit equation for c(t) to be

x6 + 3x4y2 + 3x2y4 + y6 + 4x5 + 8x3y2 + 4xy4 + 4x2y2 = 0:

We invite readers to investigate that the polynomial p(x) while �nding the point D (when
setting p(x) = 0) turns out to be a degree 6 with four multiple roots at the origin (0; 0; 0): Thus
the Vieta's formula can be applied again. [See Maple worksheet S8].
Method 2. We invite readers to apply C = (r(t) cos t; r(t) sin t) and its antipodal point,

D0 = (r(t+ �) cos(t+ �); r(t+ �) sin(t+ �)) when the �xed point A is at the origin. We then
apply the Proposition 4 to obtain the corresponding locus surface in 3D accordingly.
Explorations: Here is another Exercise that the Vieta's formulae can be applied directly

to �nd its 2D locus curve.

1. Let r(t) = �2 cos t+ 2 cos2 t and c(t) = [r(t) cos t; r(t) sin t]; where t 2 [0; 2�] ; see Figure
8(b).

Figure 8(b). Graph of
r(t) = �2 cos t+2 cos2 t

(14)

We obtain the implicit equation for c(t) to be x6 + 3x4y2 + 3x2y4 + y6 + 4x5 + 8x3y2 +
4xy4 + 4x2y2 = 0 (thanks to [1]). If the �xed point is at A = (0; 0; 0); then the locus
E 0 = sC 0 + (1� s)D0 can be found by using Vieta's formulae. Consequently, if we rotate
c(t) around the x�axis to obtain a 3D surface, Vieta's formulae can be applied directly on
the implicit equation, x6+3x4 (y2 + z2)+3x2 (y2 + z2)

2
+(y2 + z2)

3
+4x5+8x3 (y2 + z2)+

4x (y2 + z2)
2
+ 4x2 (y2 + z2) = 0, to �nd the locus surface E = sC + (1� s)D:

2. Alternatively, one can apply the Method 2 in the preceding Exercise to obtain the 2D
locus curve and 3D locus surface accordingly.

3. As explained, suppose the �xed point is at the originA0 = (0; 0) ; C 0 = (r(t) cos(t); r(t) sin(t)),
then we may use D0 = (r(t+�) cos(t+�); r(t+�) sin(t+�)) to �nd its locus curve. (We
call such method as antipodal method). It is trivial that if we let CA to be the class of
curves where we can apply the antipodal method to �nd the carbon-dating locus curves,
and we let CV to be the class of curves where we can apply the Vieta's formulae to �nd
the corresponding locus curves, then we see CV  CA: However, the Vieta's formulae can
be tried when the �xed point is not at the origin.

14



The Electronic Journal of Mathematics and Technology, Volume 15, Number 1, ISSN 1933-2823

4 Locus Surfaces For Central Symmetric Surfaces

The key of �nding the locus curve or surfaces is to �nd the roots of the implicit equation that
results when we consider the intersection between the line, AC; and the given surface. We
have discussed how Vieta's formulas can be used in calculating roots for quadratic or special
higher degree polynomial equations. The existences of such polynomials require us to know the
corresponding implicit equations for the given curves or surfaces in advance. In this section,
we consider special surfaces, other than spheres, that are central symmetric (symmetric to the
origin). As a result, we see D = �C for central symmetric surfaces, and the corresponding
locus surfaces can be found easily and we don't need its implicit polynomial equation. The
Roman surface we shall explore in this section is characterized by a stronger property, namely
A = C = D; and the locus surface will be therefore a �xed surface. First, we consider the
following

Proposition 8 If � is symmetric with respect to the origin (0; 0; 0); then the locus surface �
is obtained by contracting (dilating) surface � by j2s� 1j.
Proof
Let E be a point on surface �. By construction, there are points C and D on the surface �

such that E = sC + (1 � s)D. Since � is symmetric with respect �xed point A, point D must
be \antipode" of point C, so D = �C and therefore

E = sC + (1� s)D = (2s� 1)C

that is, � � (2s� 1)�. The reciprocal inclusion is analogous.

4.1 Cyclotomic surface

Let A = (0; 0; 0). A cyclotomic surface can be de�ned as

� =
�
(x; y; z) 2 R3 :

�
x2 + y2 + z2

� �
x2 + y2

�
� a2x2 = 0

	
It is clear that � is symmetric with respect to A by its algebraic implicit equation de�ned
above. Using parametrization for �, we can also represent a generic point C on � as24 x̂ŷ

ẑ

35 =
24 r(u) cos(u) sin(v)r(u) sin(u) sin(v)

r(u) cos(v)

35 ;
where r(u) = a cosu, u 2 [0; 2�] is some kind of \variable longitude", and v 2 [��; �] is some
kind of \extended colatitude". Along this observation, we can view cyclotomic surface as an
equation in the spherical coordinate (�; u; v) as follows:

� = r(u);

with u 2 [0; 2�] and v 2 [��; �]: We see that the spherical surface is clearly central symmetric.
As a result, the intersection point between the line AC and the surface � has to be at D = �C

15
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without knowing its implicit equation. Hence, it follows from Proposition 8 that the locus
surface generated by point E = sC + (1� s)D is

�(u; v) =

24 x̂ŷ
ẑ

35 = j2s� 1j
24 r(u) cos(u) sin(v)r(u) sin(u) sin(v)

r(u) cos(v)

35 ; u 2 [0; 2�] and v 2 [��; �]:
We present the two following examples:

Example 9 Consider the cyclotomic surface�
x2 + y2 + z2

� �
x2 + y2

�
� 4x2 = 0;

or the spherical equation of � = 2 cos u; with u 2 [0; 2�] and v 2 [��; �]; see Figure 9.

Figure 9. Spherical
surface of � = 2 cos u

A locus trace with the original surface and the locus surface,when parameter s = 0:25 and �xed
point A = (0; 0; 0); are shown respectively in Figures 10(a) and 10(b) respectively..

Figure 10(a) Trace and the
surface

Figure 10(b). Locus surface
with a trace
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To reproduce an animation of the locus trace shown above, see Exploration [S9]. We next
extend the cyclotomic surface by varying its spherical equation and note that the locus surface
is obtainable without knowing its implicit equation.

Example 10 We consider the surface generated by the spherical equation of � = r(u) cos u;
with r(u) = 2� 2 cosu; u 2 [0; 2�] and v 2 [��; �] : we see the surface to be central symmetric;
and thus the behavior of the corresponding locus surface follows the Proposition 8. We observe
the following key points:

1. As we have observed that a surface represented by � = f(u) will be central symmetric.
We note the polar plot for r(u) = 2� 2 cosu; u 2 [0; 2�] is shown in Figure 11(a).

Figure 11(a). r(u) =
2� 2 cosu; u 2 [0; 2�]

2. The spherical plot for � = r(u) cosu; together with two respective slices when v = �
2
and

v = ��
2
when u 2 [0; 2�], is shown below in Figure 11(b).

Figure 11(b). Traces for
� = r(u) cos u; v = �

2
and

v = ��
2
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3. The spherical plot for � = r(u) cosu; together with two respective slices when v = �
4
and

v = �3�
4
when u 2 [0; 2�], is shown below in Figure 11(c).

Figure 12(c). Traces for
� = r(u) cos u; v = �

4
and

v = �3�
4

4. We can �nd the locus surface for a central symmetric surface without knowing its implicit
equation.

5 The locus surface is �xed

We start with simple 2D cases where the locus curves stay as �xed curves. In particular, we
discuss a 2D scenario where the antipodal point D happens to be the same as the moving point
C when the �xed point is at the origin.

Example 11 We consider r(t) = sin t cos 2t; t 2 [0; 2�] ; see Figure 13. The implicit equation
for r(t) involves a polynomial of degree 4. It is easy to verify that the degree 4 implicit equation,
x4+2x2y2+ y4�x2y+ y3 = 0; produces triple roots at the origin and consequently, the required
point D is the same as the moving point C. Thus, the locus for E = sC + (1 � s)D becomes
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the point D or C: We leave this to readers to explore.

Figure 13. r(t) =
sin t cos 2t; t 2 [0; 2�]

Remarks:

� Indeed there are cases when the locus is the same as its original curve when the �xed
point is at the origin. Readers can also try polar curve of r = (cos t)3 ; t 2 [0; 2�] ; where
its implicit equation is �x3 + x4 + 2x2y2 + y4 = 0:

� It is trivial that if the polynomial equation p(x) = 0 (degree of p(x) is 4), while �nding
the point D produces triple roots at the origin, then the antipodal points D = C with
respective to the origin.

Now we explore the Roman or Steiner surface (see [8]) in 3D, where we shall see that the
locus surface stays �xed too. We extract the following observations which are related to our
paper as follows:

1. We can view the Roman surface as the image of a sphere of radius r, centered at the origin
under the map of f(x; y; z) = (yz; xz; xy); which gives a degree four implicit formula:

x2y2 + y2z2 + z2x2 � r2xyz = 0:

The corresponding parametric equation for the Roman surface can be written as follows:

x = r2 cosu cos v sin v

y = r2 sinu cos v sin v

z = r2 cosu sinu cos2 v;
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where u 2 [0; 2�] and v 2 [0; �] :The Roman surface when r = 1 is shown in Figure 14.

Figure 14. Roman surface
x2y2+ y2z2+ z2x2�xyz = 0

2. We see if the �xed point A = (0; 0; 0) ; and C = (x; y; z) is on the Roman surface, then its
antipodal point D = (�x;�y;�z) is the same as C = (x; y; z) : This leads to the locus
surface E based on E = sC +(1� s)D to be a �xed surface, unchanged from the original
Roman surface.

3. We can also follow the derivation of obtaining the locus in Section 2 that the locus surface
for the Roman surface is indeed �xed, with the help of its implicit equation. The key step
is that it involves an equation of a degree four quartic polynomial in x; which has three
triple zeros at x = 0: Consequently, it leads to D = C: We leave this simple exercise to
the readers to verify.

By looking at problems discussed in Section 3.3 and these two special surfaces discussed
above, it will be interesting area in algebraic geometry to see if we categorize those surfaces of
higher orders, that has the property of any one of the following properties: (a) the �xed point
A = D; (b) C = �D; or (c) C = D:

6 Conclusion

In this paper, we explored 3D generalization of the locus problems discussed in ([9]) and beyond.
We have seen situations where Vieta's formulas can be adopted directly for quadric surfaces.
We have also seen the Vieta's formulas can be applied on some special higher degree polynomial
equations. In view of Example 6 of r = a� a cos t; we have seen that it is possible to �nd the
locus curve when the �xed point A is at the origin, (0; 0) or at (�2a; 0): However, when the
�xed point A = (x; 0) is an interior point, where x 2 (�2a; 0) ; then we will be led into �nding
solutions for polynomial equations of degree higher than two, which involve real and complex
roots Therefore, we will investigate the followings further in our future work:

1. We will explore problems that involve in extracting proper real roots to assist us �nding
our locus accordingly.
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2. We will investigate cases when the point D does not posses a closed form but only in
numerical form. We shall see how the numerical approximation value D can assist us
�nding the corresponding locus E.

Moreover, if C and D are both on the given surface �; and if we vary s 2 [0; 1]; then E;
described in our Main problem, de�nes a transformation between C and D (when s = 0; E = D
and if s = 1; E = C): On the other hand, if we are given two surfaces, � and �0, with C 2
� and D 2 �0; where C and D are still connected by a line l through a �xed point A: Then
the locus E; in this case, can be viewed as a transformation as a function of s; between two
topological surfaces � and �0: Another area we will explore in our future work is the following
scenario: For a given by � and a �xed point at A; by selecting three vectors, AB;AC and AD;
where B;C and D are on � respectively. We explore the new generated a�ne surface of

�0 = r � AB + s � AC + t � AD;

where r; s; t 2 R with r+s+ t = 1: Therefore, we may extend the areas we discuss in this paper
to problems and applications in topology, algebraic geometry, computer graphics, projective
geometry and etc. with the help of technological tools.
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